Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38567654

RESUMO

CONTEXT: Melanocortin-4 receptor (MC4R) plays an important role in body weight regulation. Pathogenic MC4R variants are the most common cause of monogenic obesity. OBJECTIVE: We have identified 17 MC4R variants in adult and pediatric patients with obesity. Here, we aimed to functionally characterize these variants by analyzing four different aspects of MC4R signaling. In addition, we aimed to analyze the effect of setmelanotide, a potent MC4R agonist, on these MC4R variants. MATERIALS AND METHODS: Cell surface expression and α-MSH- or setmelanotide-induced cAMP response, ß-arrestin-2 recruitment, and ERK activation were measured in cells expressing either wild type (WT) or variant MC4R. RESULTS: We found a large heterogeneity in the function of these variants. We identified variants with a loss of response for all studied MC4R signaling, variants with no cAMP accumulation or ERK activation but normal ß-arrestin-2 recruitment, and variants with normal cAMP accumulation and ERK activation but decreased ß-arrestin-2 recruitment, indicating disrupted desensitization and signaling mechanisms. Setmelanotide displayed a greater potency and similar efficacy as α-MSH, and induced significantly increased maximal cAMP responses of several variants compared to α-MSH. Despite the heterogeneity in functional response, there was no apparent difference in the obesity phenotype in our patients. DISCUSSION: We show that these obesity-associated MC4R variants affect MC4R signaling differently, yet leading to a comparable clinical phenotype. Our results demonstrate the clinical importance of assessing the effect of MC4R variants on a range of molecular signaling mechanisms to determine their association with obesity, which may aid in improving personalized treatment.

2.
Diabetes Obes Metab ; 26 Suppl 2: 34-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450938

RESUMO

Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.


Assuntos
Craniofaringioma , Doenças Hipotalâmicas , Neoplasias Hipofisárias , Humanos , Leptina/metabolismo , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/terapia , Doenças Hipotalâmicas/metabolismo , Obesidade/complicações , Obesidade/terapia , Obesidade/genética , Hipotálamo/metabolismo , Craniofaringioma/complicações , Craniofaringioma/terapia , Craniofaringioma/metabolismo , Hiperfagia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Melanocortinas/metabolismo , Metabolismo Energético/fisiologia
3.
Children (Basel) ; 11(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397265

RESUMO

Obesity is a significant health problem with a continuously increasing prevalence among children and adolescents that has become a modern pandemic during the last decades. Nowadays, the genetic contribution to obesity is well-established. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles, and meta-analyses regarding the genetics of obesity and current pharmacological treatment, published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Our research was conducted between December 2022 and December 2023. We used the terms "obesity", "genetics", "monogenic", "syndromic", "drugs", "autosomal dominant", "autosomal recessive", "leptin-melanocortin pathway", and "children" in different combinations. Recognizing the genetic background in obesity can enhance the effectiveness of treatment. During the last years, intense research in the field of obesity treatment has increased the number of available drugs. This review analyzes the main categories of syndromic and monogenic obesity discussing current data on genetic-based pharmacological treatment of genetic obesity and highlighting the necessity that cases of genetic obesity should follow specific, pharmacological treatment based on their genetic background.

4.
J Cell Physiol ; 238(12): 2867-2878, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850660

RESUMO

The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.


Assuntos
Peixes , Genes Homeobox , Leptina , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Leptina/genética , Leptina/farmacologia , Regiões Promotoras Genéticas/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Hormônios Tireóideos , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Humanos , Células HEK293
5.
Children (Basel) ; 10(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508717

RESUMO

Obesity is a multifactorial disease whose onset and development are shaped by the individual genetic background. The melanocortin 4 receptor gene (MC4R) is involved in the regulation of food intake and energy expenditure. Some of the single nucleotide polymorphisms (SNPs) of this gene are related to obesity and metabolic risk factors. The present study was undertaken to assess the relationship between three polymorphism SNPs, namely, rs17782313, rs17773430 and rs34114122, and obesity and metabolic risk factors. One hundred seventy-eight children with obesity aged between 7 and 16 years were studied to determine anthropometric variables and biochemical and inflammatory parameters. Our results highlight that metabolic risk factors, especially alterations in carbohydrate metabolism, were related to rs17782313. The presence of the minor C allele in the three variants (C-C-C) was significantly associated with anthropometric measures indicative of obesity, such as the body mass and fat mass indexes, and increased the values of insulinemia to 21.91 µIU/mL with respect to the wild type values. Our study suggests that the C-C-C haplotype of the SNPs rs17782313, rs17773430 and rs34114122 of the MC4R gene potentiates metabolic risk factors at early ages in children with obesity.

6.
Anim Biosci ; 36(9): 1350-1356, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37170502

RESUMO

OBJECTIVE: This study was conducted to investigate polymorphisms of the melanocortin-4 receptor (MC4R) and insulin like growth factor 2 (IGF2) genes and to evaluate the growth traits affected by such polymorphisms in Thai native (Kradon) pigs. METHODS: Blood samples and productive data from 91 Kradon pigs were collected. DNA was extracted and quantified, the IGF2 and MC4R genes were amplified, and the polymerase chain reaction (PCR) produces were digested using the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. Genotyping was performed, and the association between genotypes and growth traits on the birth and weaning weights were evaluated. RESULTS: The IGF2 intron7 g.162G>C variations in Kradon pigs were found in three genotypes: i) GG, ii) GC, and iii) CC. The GG genotype frequency was the highest followed by the GC and CC genotypes. The frequencies of the G and C alleles were 0.703 and 0.297, respectively. The MC4R genotype was found in only one genotype (GG). The IGF2 gene pattern was not associated with birth weight traits, whereas the IGF2 gene pattern was related to the weaning weight trait in Kradon pigs. Pigs with the CC and GC genotypes had higher weaning weights than ones with the GG genotype (p<0.001). CONCLUSION: Thai native Kradon pigs with the CC and GC genotypes of the IGF2 gene have higher weaning weights than pigs with the GG genotype.

7.
J Mol Endocrinol ; 71(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040537

RESUMO

The melanocortin-4 receptor (MC4R) plays a critical role in regulating energy homeostasis. Studies on obesogenic human MC4R (hMC4R) variants have not yet revealed how hMC4R maintains body weight. Here, we identified a signaling profile for obesogenic constitutively active H76R and L250Q hMC4R variants transfected in HEK293 cells that included constitutive activity for adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP) response element (CRE)-driven transcription, and calcium mobilization but not phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) activity. Importantly, the signaling profile included impaired α-melanocyte-stimulating hormone-induced CRE-driven transcription but not impaired α-melanocyte-stimulating hormone-induced AC, calcium, or pERK1/2. This profile was not observed for transfected H158R, a constitutively active hMC4R variant associated with overweight but not obesity. We concluded that there is potential for α-melanocyte-stimulating hormone-induced CRE-driven transcription in HEK293 cells transfected with obesogenic hMC4R variants to be the key predictive tool for determining whether they exhibit loss of function. Furthermore, in vivo, α-melanocyte-stimulating hormone-induced hMC4R CRE-driven transcription may be key for maintaining body weight.


Assuntos
Cálcio , alfa-MSH , Humanos , alfa-MSH/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Células HEK293 , AMP Cíclico/metabolismo , Obesidade , Adenilil Ciclases
8.
FASEB J ; 37(5): e22920, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37078546

RESUMO

The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN → LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.


Assuntos
Núcleo Hipotalâmico Paraventricular , Receptor Tipo 4 de Melanocortina , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Peso Corporal , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Aumento de Peso
9.
Front Mol Neurosci ; 16: 1038341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910260

RESUMO

Melanocortin 3 receptors (MC3R) and melanocortin 4 receptors (MC4R) are vital in regulating a variety of functions across many species. For example, the dysregulation of these receptors results in obesity and dysfunction in sexual behaviors. Only a handful of studies have mapped the expression of MC3R and MC4R mRNA across the central nervous system, with the primary focus on mice and rats. Because Syrian hamsters are valuable models for functions regulated by melanocortin receptors, our current study maps the distribution of MC3R and MC4R mRNA in the Syrian hamster telencephalon, diencephalon, and midbrain using RNAscope. We found that the expression of MC3R mRNA was lowest in the telencephalon and greatest in the diencephalon, whereas the expression of MC4R mRNA was greatest in the midbrain. A comparison of these findings to previous studies found that MC3R and MC4R expression is similar in some brain regions across species and divergent in others. In addition, our study identifies novel brain regions for the expression of MC3Rs and MC4Rs, and identifies cells that co-express bothMC3 and MC4 receptors within certain brain regions.

10.
Physiol Behav ; 262: 114105, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736416

RESUMO

Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.


Assuntos
Transtorno Depressivo Maior , Motivação , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Camundongos Knockout
11.
Neurosci Lett ; 796: 137054, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36610589

RESUMO

Treatment of chronic orofacial pain remains a major therapeutic challenge despite available medications. Melanocortins have been implicated in pathologic pain. Intrathecal administration of MC4R antagonists has been shown to alleviate neuropathic pain (NP) in male rats. However, intrathecal delivery is very invasive and requires surgeon's intervention. Intra-nasal rout offers a non-invasive drug delivery method that can be self-administered making it very attractive clinically. In this study, we investigated the effects of intra-nasally delivered MC4R antagonist (HS014) on trigeminal neuropathic pain (TNP) in male and female rats. We also measured the MC4R protein levels in the trigeminal ganglia (TG) and infraorbital nerve (ION) of rats. We used ION chronic constriction injury (ION-CCI) to induce TNP in rats. We used von Frey and pinprick assays to measure the development of hypersensitivity in the face following ION-CCI. At 22 days post-ION-CCI, we delivered HS014 intra-nasally to measure its effects on TNP in rats. We used enzyme linked immunosorbent assay to measure MC4R protein levels in the TG and ION. ION-CCI resulted in a significant increase of MC4R protein levels in the ipsilateral TG and ION of male and female rats. Intra-nasal delivered HS014 resulted in a significant reduction of ION-CCI induced hypersensitivity in male and female rats. These results demonstrate that intranasal delivery of MC4R antagonist alleviated TNP in male and female rats and suggest that such treatment could be beneficial therapeutically for individuals with chronic NP.


Assuntos
Neuralgia , Neuralgia do Trigêmeo , Feminino , Ratos , Masculino , Animais , Hiperalgesia/tratamento farmacológico , Receptor Tipo 4 de Melanocortina , Neuralgia do Trigêmeo/tratamento farmacológico , Neuralgia do Trigêmeo/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Dor Facial/tratamento farmacológico
12.
J Clin Res Pediatr Endocrinol ; 15(2): 225-229, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34584129

RESUMO

Variants of the melanocortin-4 receptor (MC4R) gene are the most common cause of monogenic obesity. It has been shown that, while obesity cannot be controlled with diet and exercise, glucagon-like-peptide-1 receptor agonists (GLP-1 RA) provide weight loss in the short term. In this paper, our experience with liraglutide treatment in an adolescent patient carrying a MC4R gene variant is presented. A female patient was admitted first at the age of 12.5 years with a complaint of progressive weight gain. She had marked excess of appetite since infancy. On physical examination of the pubertal female patient with a body mass index (BMI) of 36.1 kg/m2 (3.48 standard deviation score), there was no pathological finding except diffuse acanthosis nigricans. Laboratory examinations revealed only insulin resistance. Weight loss was not achieved with lifestyle changes, metformin and orlistat treatments. On genetic examination, a sporadic heterozygous c.206T>G(p.I69R) variant that had been reported previously, was found in MC4R gene. Treatment with the GLP-1 RA, liraglutide, was initiated and a 19.2% reduction was achieved in the body weight and BMI at the end of 32 weeks. However, the patient, whose treatment compliance was disrupted due to significant gastrointestinal complaints, returned to her former weight within a few months (13 weeks) after treatment was stopped. In this case with a known pathogenic variant in MC4R gene, decrease of appetite and weight loss were achieved with liraglutide treatment, but side-effects of this treatment led to discontinuation of therapy. In such cases, there is need for effective and tolerable treatment options.

13.
J Sport Health Sci ; 12(1): 45-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621697

RESUMO

Melanocortin 4 receptor (MC4R), the most important monogenetic cause of human metabolic disorders, has been of great interest to many researchers in the field of energy homeostasis and public health. Because MC4R is a vital pharmaceutical target for maintaining controllable appetite and body weight for professional athletes, previous studies have mainly focused on the central, rather than the peripheral, roles of MC4R. Thus, the local expression of MC4R and its behavioral regulation remain unclear. In an attempt to shed light on different directions for future studies of MC4R signaling, we review a series of recent and important studies exploring the peripheral functions of MC4R and the direct physiological interaction between peripheral organs and central MC4R neurons in this article.


Assuntos
Receptor Tipo 4 de Melanocortina , Transdução de Sinais , Humanos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Peso Corporal
14.
J Anim Breed Genet ; 140(2): 207-215, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583444

RESUMO

The missense mutation Asp298Asn in the melanocortin 4 receptor (MC4R) is associated with daily gain or fatness in pigs (Sus scrofa domesticus). However, to the best of our knowledge, no study has directly compared the effects of the polymorphism between different feeding levels, even though diet plays a vital role in the swine industry. To explore possible differences, data from 439 mostly commercial hybrids fattened ad libitum and 119 commercial hybrids fattened with restricted feed ration were collected. The recorded traits were average daily gain (ADG), feed conversion ratio (FCR), carcass weight (CW), dressing percentage (DP), lean meat content (LM), backfat thickness (BFT), lean cuts weight, and meat quality parameters such as pH, temperature, drip loss, and CIELAB colour space. The general linear model revealed that the overall effect of MC4R was not statistically significant, but significant differences (p < 0.05) were found in ADG, FCR, CW, DP, LM, and BFT. In the ad libitum category, the AA genotype (298Asn/298Asn) tended to be the most favourable for growth-related traits, with the lowest LM, which is consistent with previous findings. In the restricted category, on the other hand, GA heterozygotes (298Asp/298Asn) achieved the best performance in terms of growth, whereas AA homozygotes showed the worst performance. Therefore, these results raise the possibility of an interaction between MC4R and the feeding level.


Assuntos
Dieta , Carne , Animais , Fenótipo , Homozigoto , Composição Corporal/genética
15.
CNS Neurosci Ther ; 29(2): 646-658, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36510669

RESUMO

AIMS: Central melanocortin 4 receptor (MC4R) has been reported to induce anhedonia via eliciting dysfunction of excitatory synapses. It is evident that metabolic signals are closely related to chronic stress-induced depression. Here, we investigated that a neural circuit is involved in melanocortin signaling contributing to susceptibility to stress. METHODS: Chronic social defeat stress (CSDS) was used to develop depressive-like behavior. Electrophysiologic and chemogenetic approaches were performed to evaluate the role of paraventricular thalamus (PVT) glutamatergic to nucleus accumbens shell (NAcsh) circuit in stress susceptibility. Pharmacological and genetic manipulations were applied to investigate the molecular mechanisms of melanocortin signaling in the circuit. RESULTS: CSDS increases the excitatory neurotransmission in NAcsh through MC4R signaling. The enhanced excitatory synaptic input in NAcsh is projected from PVT glutamatergic neurons. Moreover, chemogenetic manipulation of PVTGlu -NAcsh projection mediates the susceptibility to stress, which is dependent on MC4R signaling. Overall, these results reveal that the strengthened excitatory neurotransmission in NAcsh originates from PVT glutamatergic neurons, facilitating the susceptibility to stress through melanocortin signaling. CONCLUSIONS: Our results make a strong case for harnessing a thalamic circuit to reorganize excitatory synaptic transmission in relieving stress susceptibility and provide insights gained on metabolic underpinnings of protection against stress-induced depressive-like behavior.


Assuntos
Núcleo Accumbens , Receptor Tipo 4 de Melanocortina , Núcleo Accumbens/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Tálamo , Neurônios/metabolismo , Transmissão Sináptica
16.
Eat Weight Disord ; 27(8): 3609-3625, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36565379

RESUMO

PURPOSE: Mental health and sleep quality are associated with genetics and nutrient and energy intake. The present study examined the association between ultra-processed food (UPF) intake and genetic risk score (GRS) and their interactions on mental health and sleep quality in Iranian women. METHODS: A cross-sectional study was conducted on 278 overweight and obese females aged between 18 and 56 years. According to the NOVA classification system, 37 food groups and beverages were collected using a 147-item semi-quantitative food frequency questionnaire (FFQ). The blood parameters of all participants were assessed. Mini-column kit (type G; Genall; Exgene) and the PCR-RFLP method were used to extract DNA and determine gene polymorphism, respectively. Three single nucleotide polymorphisms (SNPs), including Caveolin_1 (Cav_1), Melanocortin4 receptor (MC4R), and cryptochrome circadian regulator 1 (CRY1), were used to calculate GRS. The individual risk allele (0, 1, 2) for each SNP was calculated using the incremental genetic model. RESULTS: After controlling for confounders, a significant interaction was found for depression (ß = 0.026, 95% CI 0.003, 0.049, P = 0.028) and depression anxiety stress scales (DASS) score (ß = 0.059, 95% CI 0.001, 0.117, P = 0.046) on the NOVA classification system and GRS. CONCLUSIONS: The findings of this study showed a significant interaction between GRS and the NOVA classification system on mental disorders, including depression, DASS score and stress. There was also a significant relationship between the NOVA classification system and anxiety, DASS score, sleep quality and depression. Furthermore, a partially significant association was observed between GRS and stress. LEVEL OF EVIDENCE: Level V, cross-sectional descriptive study.


Assuntos
Alimento Processado , Qualidade do Sono , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Saúde Mental , Irã (Geográfico) , Fast Foods , Fatores de Risco , Dieta
17.
Genes (Basel) ; 13(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36553534

RESUMO

The loss of function melanocortin 4-receptor (MC4R) Ile269Asn mutation has been proposed as one of the most important genetic contributors to obesity in the Mexican population. However, whether patients bearing this mutation respond differently to weight loss treatments is unknown. We tested the association of this mutation with obesity in 1683 Mexican adults, and compared the response of mutation carriers and non-carriers to three different weight loss interventions: dietary restriction intervention, phentermine 30 mg/day treatment, and Roux-en-Y gastric bypass (RYGB) surgery. The Ile269Asn mutation was associated with obesity [OR = 3.8, 95% CI (1.5-9.7), p = 0.005]. Regarding interventions, in the dietary restriction group only two patients were MC4R Ile269Asn mutation carriers. After 1 month of treatment, both mutation carriers lost weight: -4.0 kg (-2.9%) in patient 1, and -1.8 kg (-1.5%) in patient 2; similar to the mean weight loss observed in six non-carrier subjects (-2.9 kg; -2.8%). Phentermine treatment produced similar weight loss in six carriers (-12.7 kg; 15.5%) and 18 non-carriers (-11.3 kg; 13.6%) after 6 months of pharmacological treatment. RYGB also caused similar weight loss in seven carriers (29.9%) and 24 non-carriers (27.8%), 6 months after surgery. Our findings suggest that while the presence of a single MC4R loss of function Ile269Asn allele significantly increases obesity risk, the presence of at least one functional MC4R allele seems sufficient to allow short-term weight loss in response to dietary restriction, phentermine and RYGB. Thus, these three different interventions may be useful for the short-term treatment of obesity in MC4R Ile269Asn mutation carriers.


Assuntos
Cirurgia Bariátrica , Fentermina , Receptor Tipo 4 de Melanocortina , Adulto , Humanos , Mutação , Obesidade/genética , Obesidade/cirurgia , Redução de Peso/genética , Receptor Tipo 4 de Melanocortina/genética
18.
Life (Basel) ; 12(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362948

RESUMO

The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations' position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.

19.
Biomolecules ; 12(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358958

RESUMO

The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal responses to five agonists than those of human MC3R. We further investigated the modulation of cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R, MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs. All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.


Assuntos
Melanocortinas , Receptor Tipo 2 de Melanocortina , Cães , Animais , Humanos , Melanocortinas/metabolismo , Receptor Tipo 2 de Melanocortina/metabolismo , alfa-MSH/metabolismo , alfa-MSH/farmacologia , Hormônio Adrenocorticotrópico/farmacologia , Hormônio Adrenocorticotrópico/metabolismo , Receptores de Melanocortina/metabolismo , Proteínas de Transporte/metabolismo
20.
Biomedicines ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36289871

RESUMO

Aim: Calorie restriction (CR) diets and glucagon-Like Peptide-1 (GLP-1) analogs are known to alter energy homeostasis with the potential to affect the expression of obesity-related genes (ORGs). We hypothesized that CR and GLP-1 administration can alter ORGs expression in spermatozoa and testes, as well as the sperm parameters implicated in male fertility. Materials and Methods: Six-week-old adult male Wistar rats (n = 16) were divided into three groups, submitted either to CR (n = 6, fed with 30% less chow diet than the control rats), GLP-1 administration (n = 5, 3.5 pmol/min/kg intraperitoneal) for 28 days, or used as controls (n = 5, fed ad libitum). Selected ORGs expression, namely the fat mass and obesity-associated (FTO), melanocortin-4 receptor (MC4R), glucosamine-6-phosphate deaminase 2 (GNPDA2), and transmembrane protein 18 (TMEM18) were evaluated in testes and spermatozoa by a quantitative polymerase chain reaction (qPCR). Results: CR resulted in lower body weight gain and insulin resistance, but a higher percentage of sperm head defects. GLP-1 administration, despite showing no influence on body weight or glucose homeostasis, resulted in a lower percentage of sperm head defects. CR and GLP-1 administration were associated with a higher expression of all ORGs in the testes. Under CR conditions, the genes FTO and TMEM18 expression in the testes and the MC4R and TMEM18 transcripts abundance in sperm were positively correlated with the spermatozoa oxidative status. The abundance of FTO and TMEM18 in the spermatozoa of rats under CR were positively correlated with sperm concentration, while the testes' TMEM18 expression was also positively correlated with sperm vitality and negatively correlated with insulin resistance. Testes GNPDA2 expression was negatively correlated with sperm head defects. Conclusions: CR and GLP-1 administration results in higher ORGs expression in testes, and these were correlated with several alterations in sperm fertility parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...